

CORPORATE PRESENTATION

Revolutionizing Metal Processing and Production

Reshoring of Western Metals Processing. Proprietary IP. Global Licensing.

Titanium & Critical Minerals.

FEBRUARY 2026

DISCLAIMER

Forward Looking Statements

Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs. Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause Temas Resources Corp. (the "Company") actual results, performance, and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licenses and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation. Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control.

Although the Company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the Company does not undertake any obligation to publicly update or revise any of the forward-looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

Cautionary Statements and Important Information

This presentation has been prepared by the Company as a summary only and does not contain all information about assets and liabilities, financial position and performance, profits and losses, prospects, and the rights and liabilities attaching to securities. Any investment in the Company should be considered speculative and there is no guarantee that they will make a return on capital invested, that dividends would be paid, or that there will be an increase in the value of the investment in the future.

The Company does not purport to give financial or investment advice. No account has been taken of the objectives, financial situation or needs of any recipient of this presentation. Recipients of this presentation should carefully consider whether the securities issued by the Company are an appropriate investment for them in light of their personal circumstances, including their financial and taxation position.

Competent Persons Statements

The information in this document that relates to Exploration Results and Mineral Resources is extracted from the Company's ASX Prospectus dated August 29, 2025 which is available to view at Temas Resource Corp's website at www.temasresources.com.

The Company confirms that a) it is not aware of any new information or data that materially affects the information included in the ASX Prospectus; b) all material assumptions and technical parameters underpinning the Mineral Resource Estimate included in the ASX Prospectus continue to apply and have not materially changed; and c) the form and context in which the relevant Competent Persons' findings are presented in this report have not been materially changed from the ASX Prospectus.

INVESTMENT HIGHLIGHTS

01

ADVANCED METALLURGICAL TECHNOLOGY:

Pilot Study completed yielding 88 kgs of pure, commercial grade TiO₂ and technology validated at the University of Minnesota (100-ton Pilot Study).

3rd Generation technology developed over 30 years and with \$10M + spent.

04

SIGNIFICANT COST REDUCTION & SUSTAINABILITY:

Verified 59.2%–69.7% lower production costs than industry standards, driven by closed-loop reagent recycling and reduced environmental footprint.

02

STRATEGIC NORTH AMERICAN EXPLORATION PROJECTS:

Fully-owned advanced mineral properties (La Blache & Lac Brule) in Quebec, Canada, featuring substantial inferred resources and established infrastructure.

05

PATENTED TECHNOLOGY:

Owns 11 novel process patents (Regenerative Chloride Leach – RCL), validated through pilot studies producing 99.8% purity TiO₂ and Fe₂O₃.

03

GLOBAL JOINT VENTURE POTENTIAL:

Actively pursuing both Licensing & JV with mining companies in Australia, Indonesia, the USA, and Canada, enabling immediate revenue streams.

06

EXPERIENCED LEADERSHIP & ATTRACTIVE VALUATION:

Proven management team skilled in commercializing complex metallurgical projects, presenting investors an undervalued opportunity with clear near-term catalysts.

“Temas Resources offers investors a unique combination of patented metallurgical technology with proven cost advantages and strategically positioned Canadian mineral projects, providing a sustainable solution to global critical metal supply vulnerabilities and substantial growth potential. Through Joint Venture or licensing opportunities, Temas is well positioned to capitalise on the two business divisions.”

Kyler Hardy, Executive Chairman & Director

RESHORING - FULLY INTEGRATED TITANIUM SOLUTION FROM MINE TO END USER

TECH: Metallurgical IP and Technology Licensing

Patented metallurgical IP delivering superior operational economics and environmental performance.

Key Highlights:

- Temas owns 11 novel process patents, known as Regenerative Chloride Leach ("RCL") technology, providing consistent benefits transferable to new minerals.
- Verified significant cost reduction: over 65% validated for TiO_2 processing, due to reagent recycling, optimized recovery, and lower energy use.
- RCL technology has demonstrated the capability to produce high-quality 99.8% TiO_2 from pilot studies.
- Temas is actively pursuing global licensing opportunities, with third-party companies currently evaluating Temas IP for potential operations in Indonesia, Australia, and North America.

FEEDSTOCK: North American Mineral Exploration

Strategically positioned exploration projects focused on securing critical mineral supply.

Key Highlights:

- **La Blache Project (Quebec):**
 - 122 mineral claims (~7,000 hectares), PEA inferred resource of 208.5 Mt @16.5% TiO_2 Eq., significant exploration potential confirmed by previous drilling.
 - Plans include re-assaying historic NQ diamond drilling core for Sc and Ga content and resource upgrade to Measured and Indicated status.
- **Lac Brule Project (Quebec):**
 - 36 mineral claims, high-grade hemo-ilmenite deposit with areas up to 34% TiO_2 .
 - Immediate development plans aimed at reaching a Preliminary Economic Analysis (PEA) stage by 2027.

LOI SIGNED: RCL TECHNOLOGY UNLOCKS 3MOZ REFRactory GOLD VALUE

Third-party funded validation and JV pathway at a 3.0Moz high-grade gold system¹

DEAL OVERVIEW

- Letter of Intent executed with 1542642 B.C. Ltd. a private mineral project developer (the "developer")
- Testwork on ore from Revel Ridge polymetallic gold-silver project (3.0Moz @ 6.4 g/t AuEq)
- Fully funded by the developer (No Temas capex or dilution)
- Bench-scale followed by pilot-scale validation of Temas' patented RCL platform

STRATEGIC IMPORTANCE

- Validates RCL on refractory gold and sulphide systems
- Expands RCL beyond titanium into precious and polymetallic applications
- Positions RCL as a potential alternative or complement to Pressure Oxidization ("POX")
- Establishes a North American reference case for regional deployment

COMMERCIAL PATHWAY

Phase 1 – Funded Validation

- Bench-scale testing into pilot-scale testing
- Focus on gold, silver & secondary metal recovery
- Environmental and tailing reactivity assessment

Phase 2 – Temas – Controlled Joint Venture ("JV")

- North America
- Formation of an 80/20 JV in favour of Temas
- Indicative CAD\$2.0M investment by the developer
- Exclusive RCL deployment in Western

Phase 3 – Deployment & Scale Up

- Commercial rollout on refractory gold and tailings projects
- Asset acquisitions and SPV development
- Regional licencing

THIRD-PARTY FUNDED VALIDATION OF RCL ON REFRactory GOLD (~22% OF GLOBAL RESOURCES*), DEMONSTRATING MULTI-COMMODITY SCALABILITY AND A CLEAR PATHWAY TO JOINT VENTURE-LED COMMERCIAL REVENUE

¹ ASX Announcement: TEMAS SIGNS LETTER OF INTENT FOR RCL TECHNOLOGY TO UNLOCK VALUE AT 3M OUNCE GOLD PROJECT

* <https://www.mckinsey.com/industries/metals-and-mining/our-insights/refractory-gold-ores-challenges-and-opportunities-for-a-key-source-of-growth>

CRITICAL METALS PROCESSING CAPACITY IN CRISIS

ASX:TI0 CSE:TMAS OTCQBX:TMASF FRA:26PO

This highlights the importance of reshoring CM processing and vulnerability of global metal supply.

As demand for processing critical metals and rare earth elements surges, so too has the US and EU's exposure to supply vulnerabilities.

Titanium

In the US, there is only one titanium sponge producer, a facility in Utah with an estimated production capacity of 500 tons per year. In the EU, the region does not produce titanium sponge at all and is 100% reliant on imports.

The US, EU, UK, Canada, Australia and Japan all classify titanium as a critical mineral.

China's increasing implementation of export restrictions across a range of critical minerals, from tungsten to antimony, has raised alarms about potential future restrictions on titanium. Russia has similarly voiced its concerns about exporting titanium.

The EU has no domestic production capacity of titanium sponge and is therefore a net importer of titanium metal, with an import-to-export ratio of 10:1. In particular, supply from high-quality TiO₂ deposits in Ukraine have been disrupted due to the war.

TECH: METALLURGICAL IP AND TECHNOLOGY LICENSING

Patented Technology Driving Lower Costs, Superior Margins, and Global Licensing Opportunities

— “

“The Regenerative Chloride Leach technology platform, fundamentally changes the economics and sustainability of critical metal extraction. By significantly reducing both operational costs and environmental impact, we are positioned to become a global leader in innovative metallurgical solutions.”

Kyler Hardy, Executive Chairman

” —

COMPARISON OF RCL PROCESS FOR TITANIUM PRODUCTION

► Cheaper and more energy efficient:

A University of Minnesota study on ORF Technologies' patents concluded that the TiO_2 recovery process could slash production costs by ~ 50-65%, and the process is also less energy-intensive compared to the industry standard.

► Massive sector tailwinds:

The global market for TiO_2 , valued at US\$21.23 billion, is anticipated to grow at a compound annual growth rate of 6.2% through 2032, signifying a substantial opportunity for RCL efficient recovery process.

► Our technology as a platform:

ORF Technologies' patented process can produce high-quality Titanium Dioxide (TiO_2) from low-grade materials and is applicable to all ilmenite ores, including those rich in Chromium (Cr), Cobalt (Co), and Vanadium (V), thus enabling the extraction of additional value from elements that are typically not recoverable with other methods.

		Sulphate	Chloride	RCL
Technical	History	1918 (Titan Company)	1948 (Chemours)	Patented (Temas)
	Process Type	Hydrometallurgical	Pyrometallurgical	Hydrometallurgical
	Process Conditions	Hydrometallurgical (up to 180 C, 85-92% H_2SO_4)	Pyrometallurgical (up to 1200 C)	Hydrometallurgical 70 C, 20% HCl
	End-to-End Processing in One Location	Possible	Not practiced	Possible
	CAPEX per installed tonne	\$2,500-\$3,000	\$3,000-\$4,000	\$2,700 (estimated)
Environmental	Health and Safety Requirements	High	Very High	Lowest
	Environmental Challenges	Disposal of acidic waste products	Disposal of some waste products	Waste streams to Revenue Streams
	Carbon Footprint	7.56 t CO2eq / t of TiO_2	9.34 t CO2eq / t of TiO_2	20-50% lower than Chloride Route (estimated)
Financial	Energy Consumption and Efficiency	Medium but Inefficient Batch Process	Highest but Efficient	Lowest and most Efficient
	Raw Material Flexibility	Flexible and Low Cost (ilmenite/slag)	Inflexible and High Cost (rutile and SR or UGS)	Highly Flexible and Lowest Cost (slags, VTM, hemo-ilmenite, ilmenite)
	Reagent Cost	Sulphur Price has Substantial Effect	No Effect, Reagents are Regenerated	No Effect, Reagents are LArgely Regenerated
	Quality = Unit Cost of TiO_2 in Feed (USD/tonne)	\$600	\$1,200 (SR) to \$1,900 (Natural Rutile)	\$280 (Temas feedstock) \$600 (merchant ilmenite)
	OPEX (USD/Tonne)	\$700-\$1,500 (China) \$2,000-\$2,500 (Western Europe)	\$1,750 (Chemours) -\$2,325 (average)	< \$900 (estimated)
	Value = Quality of finished TiO_2 pigment (USD/tonne)	~\$2500 - \$3200	~\$3000 - \$3800 +	~\$3800 +
	Cost Drivers	Acid treatment, waste management, and higher labor/energy requirements increase costs over time.	Higher initial capital and raw material costs but, long-term savings from lower waste, continuous processing, and higher product quality.	The superior flexibility in utilizing low-cost feedstocks coupled with simple reaction vessels produces superior operating margins and environmental performance.

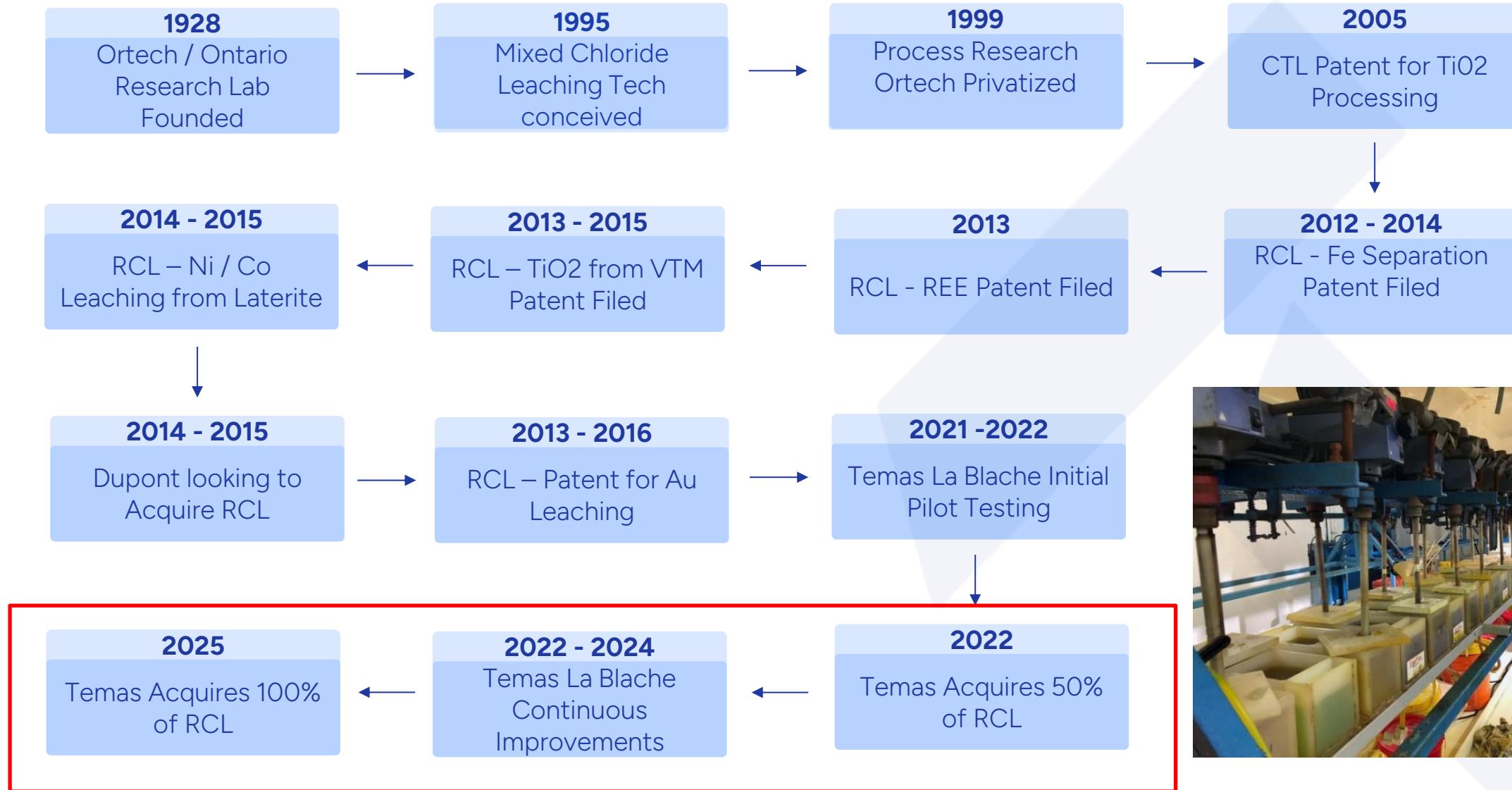
HISTORY OF TEMAS METALLURGICAL IP – THE GENESIS OF THE RCL PLATFORM

30 years + of metallurgical R&D funded by the Canadian Government was privatized with **over \$10M spent** on RCL by world renowned University of Toronto researchers Drs. Lakshmanan and Sridhar.

Temas acquired 100% ownership in 2025.

TEMAS holds 11 metallurgical process patents

The **Regenerative Chloride Leach (RCL)** platform is a series of digestion, liberation and recovery processes.


The proprietary metallurgical process extracts Gold, Silver, Nickel, REE and other Critical Minerals from complex ore bodies.

This results in OPEX cost savings via:

- **Rapid & complete liberation of the target metals**
- **Lower operating temperatures**
- **Improved selectivity and efficiency in recovery**

TECHNOLOGY HISTORY - THE RCL PLATFORM

NOTABLE – EXTENSIVE PAST RCL STUDIES IN GOLD

Client	Period	Locations	Program	Gold Recovery
Barrick	2009 – 2016 2010 – 2014 2015 - 2016	Nevada – Goldstrike, Cortez – Refractory Au Australia – KCGM – Gold Tailings Dominican Republic – Pueblo Viejo - Refractory Au	Detailed Bench & Pilot Scoping & Mini Pilot Detailed Bench & Scoping	80 % + 70 % + 90 % +
Agnico Eagle	2014 2014 2014	NWT, Canada – Low Grade Gold Ore Mexico – Low Grade Gold Ore Finland – Low Grade Gold Ore	Scoping Study Scoping Study Scoping Study	92 % + 98 % + 99 % +
Nanostruck Tech.	2013 2013	Zimbabwe – Gold Tailing with As Mexico – Gold Tailings	Scoping Study Scoping Study	96 % + 60% +
McEwen Mining	2015	Nevada – Tonkin – Refractory Gold Ore	Detailed Bench & Scoping	85 % +

NOTABLE RCL - PAST PILOT STUDIES

Metal Type	Period	Locations	Program	Notes
Refractory Gold	2009 – 2020	9 Bench Studies, 1 Mini-Pilot Study and 1 Pilot Study completed	Incl. 1 Roasted Concentrate	Testing from Run of Mine and Tailings
TiO2	2010 - 2022	4 Bench Studies, 1 Mini-Pilot Study and 3 Pilot Studies completed	La Blache and Lac Brule	VTM (2), Hemo-ilmenite, and Ilmenite
Ni Laterite	2014 - 2015	1 Bench and 1 Mini- Pilot Study Completed	-	-
Polymetallic Sulphide	2015 - 2020	1 Mini-Pilot Study Completed	Cu/Ni/Co/Fe	US located deposit

RESULTS OF PAST TiO_2 PILOT STUDIES

Study	Year	Output	Purity	Notes
Univ. of Minnesota Study	2017	Commercial grade pigment produced	99% +	Validated mixed chloride leach process
Temas RCL Pilot Study	2021 - 2022	88 kg produced pure TiO_2 from 830 kg feed	99.8%	Proven on La Blache VTM feedstock

Pilot Study Outcomes

Patented Platform Technology Validated

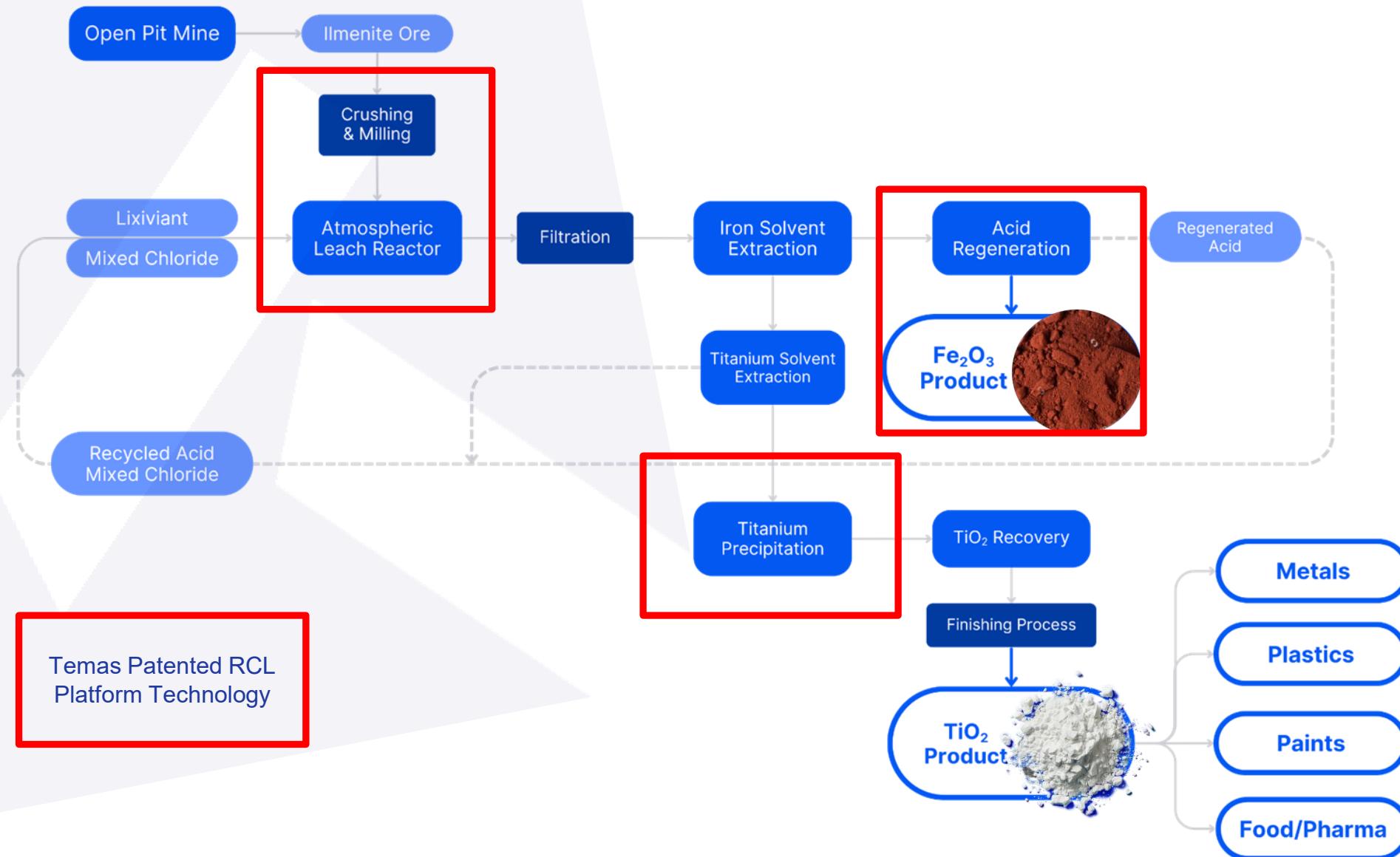
Significant operating and capital cost savings vs traditional methods

Lower energy consumption compared to industry-standard processes

Produces high-purity 99.8% TiO_2 and Fe_2O_3 from low-grade materials

Environmentally friendly leaching with reduced carbon footprint

Ideal for specialty, strategic, and REE, offering the **lowest-cost processing alternative**



SIMPLIFIED RCL TiO_2 FLOWSHEET AND LAYOUT – HOW WE PROCESS THE FEED

ASX:TIO CSE:TMAS OTCQB:TMASF FRA:26PO

TEMASRESOURCES.COM

೬

RCL PATENT SUITE: PROTECTIONS AND TARGET ELEMENTS

ASX:TIO CSE:TMAS OTCQB:TMASF FRA:26PO

TMASRESOURCES.COM

I4

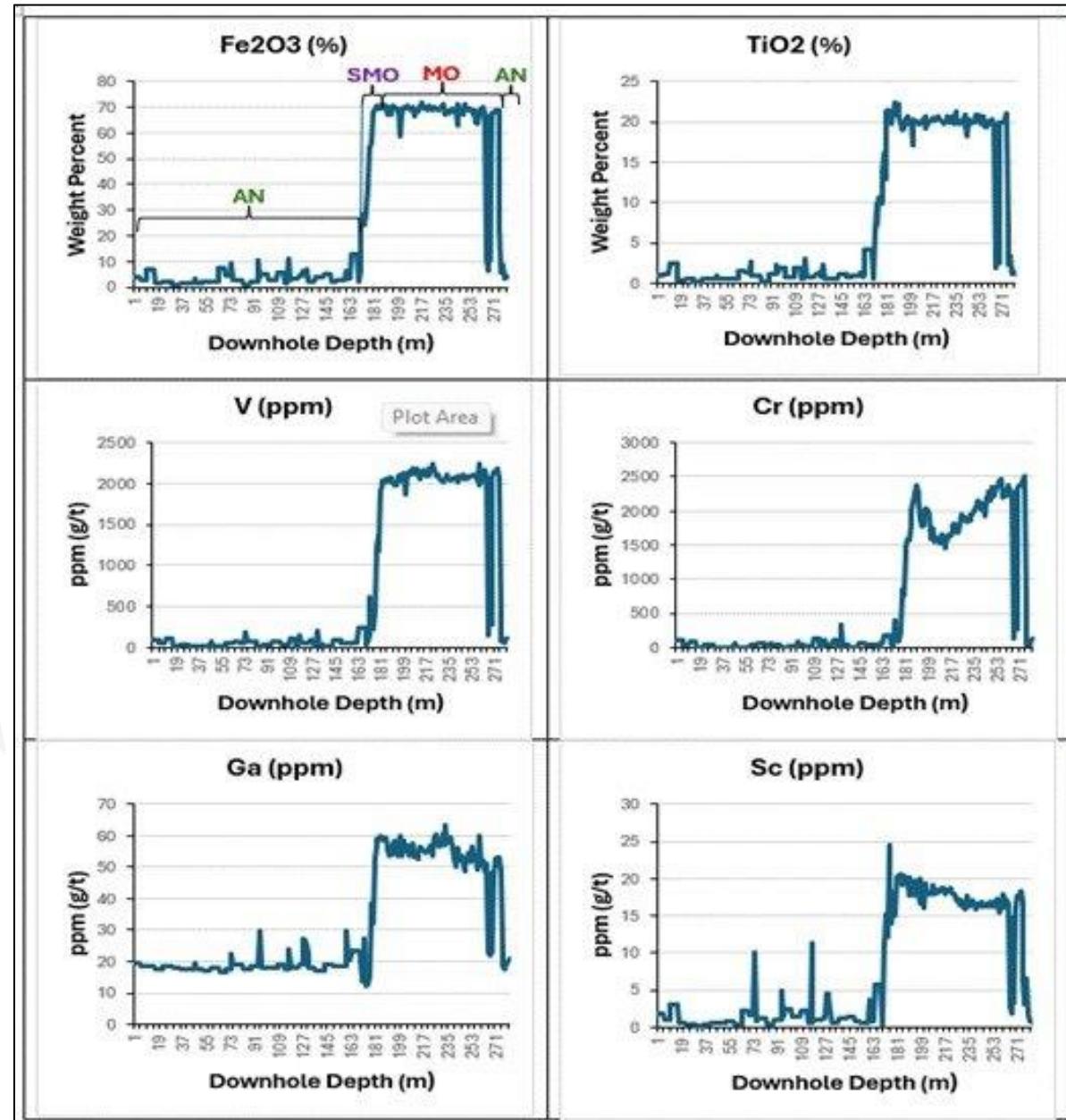
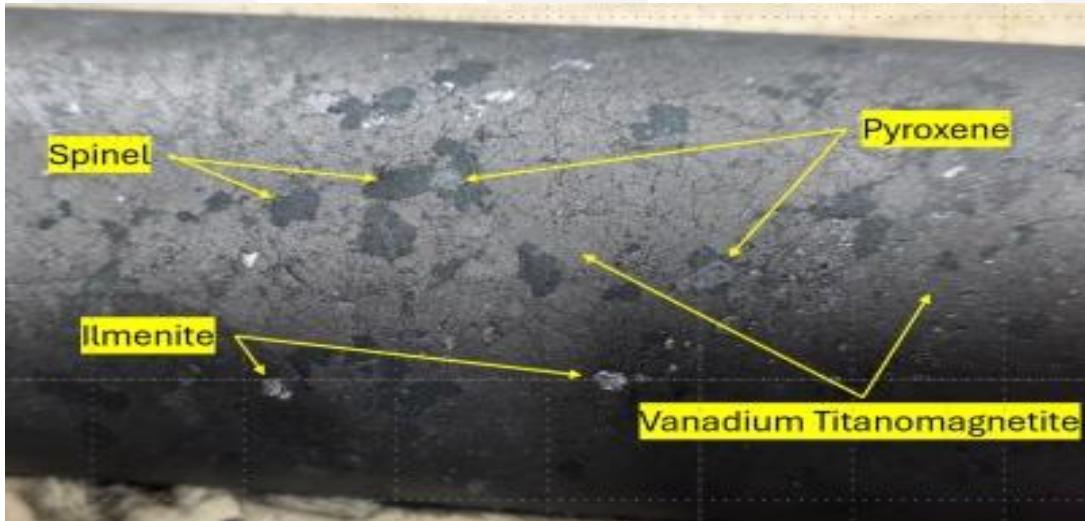
Target Elements	Title	Country	Serial No.	Patent #	Expiration	Ownership and Descriptions
Au, Ag, Pb, Zn, PGE	Chloride process for the leaching of gold	Canada	2869158	2869158	4/8/2033	https://www.ic.gc.ca/opic-cipo/cpd/eng/patent/2869158/summary.html
		USA	13/858,147	9,732,398	02/14/2036	
Ni, Co, Fe, Mg, Cu, Au, Ag, Pt, Pd	Recovery of nickel in leaching of laterite ores	USA	14/225639	10,053,750 B2	1/30/2035	https://www.ic.gc.ca/opic-cipo/cpd/eng/patent/2908082/summary.html
		Canada	2908082		3/20/2034	
Fe	Separation of iron from value metals in leaching of laterite ores	Canada	2859035	2859035	12/10/2032	https://www.ic.gc.ca/opic-cipo/cpd/eng/patent/2859035/summary.html
		USA	13/71,874	8,916,116 B2	12/12/2034	
		India	3794/DEL/2012		12/11/2032	
Ti, Mg, V, Cr, Ni, Sc	Process for the separation of iron in extraction of titanium in mixed chloride media	USA	14/649,904	10,041,141	2/4/2035	https://www.ic.gc.ca/opic-cipo/cpd/eng/patent/2891360/summary.html
		Canada	2891360	WO2014/085903	11/29/2033	
REE, Nb, Y, Zr, U, Th	Process for extraction of rare earth elements	Canada	2869251	2869251	4/8/2033	https://www.ic.gc.ca/opic-cipo/cpd/eng/patent/2869251/summary.html
		India	1918/MUMNP/2014	PT098472IN	4/13/2033	

REGENERATIVE CHLORIDE LEACH “RCL” MULTI-METAL STRATEGIC ADVANTAGE

Diversification: This multi-mineral capability allows Temas to diversify beyond a single commodity, opening revenue streams from processing complex ores with the result being an end-use product rather than a concentrate requiring further refining.

Flexibility in who we are available to partner with further diversifies potential revenue streams leveraged from the IP while effectively managing the risks.

Enhanced Project Economics: For polymetallic deposits, RCL offers the potential to extract multiple valuable metals from a single feedstock, significantly enhancing project economics with cost reductions up to 65%



Broader Joint Venture Appeal: As a licensable technology; RCL's has proven to be adaptable to various minerals, including those listed in our IP such as Titanium, Iron REE, Gold, Silver, Nickel etc. dramatically widening its market appeal to miners globally.

Temas is actively pursuing **global licensing and joint venture opportunities**, with third-party companies currently evaluating Temas IP for potential operations in **Indonesia, Australia, and North America**.

THE RCL ADVANTAGE – LA BLACHE

- **RCL has a significant advantage over other processing paths** in that any element that dissolves into solution can be rendered into a pure form (chemical, pigment or battery grade).
- La Blache has about **85-90% in situ rock as pay mineral using RCL (including Fe, V, Ti, Sc, Ga and Cr).**
- La Blache is **world-class** and is the **third largest massive oxide resource in the world.**
- **Consistent grades** strongly suggest that **additional REE and Critical Mineral elements are likely present.**

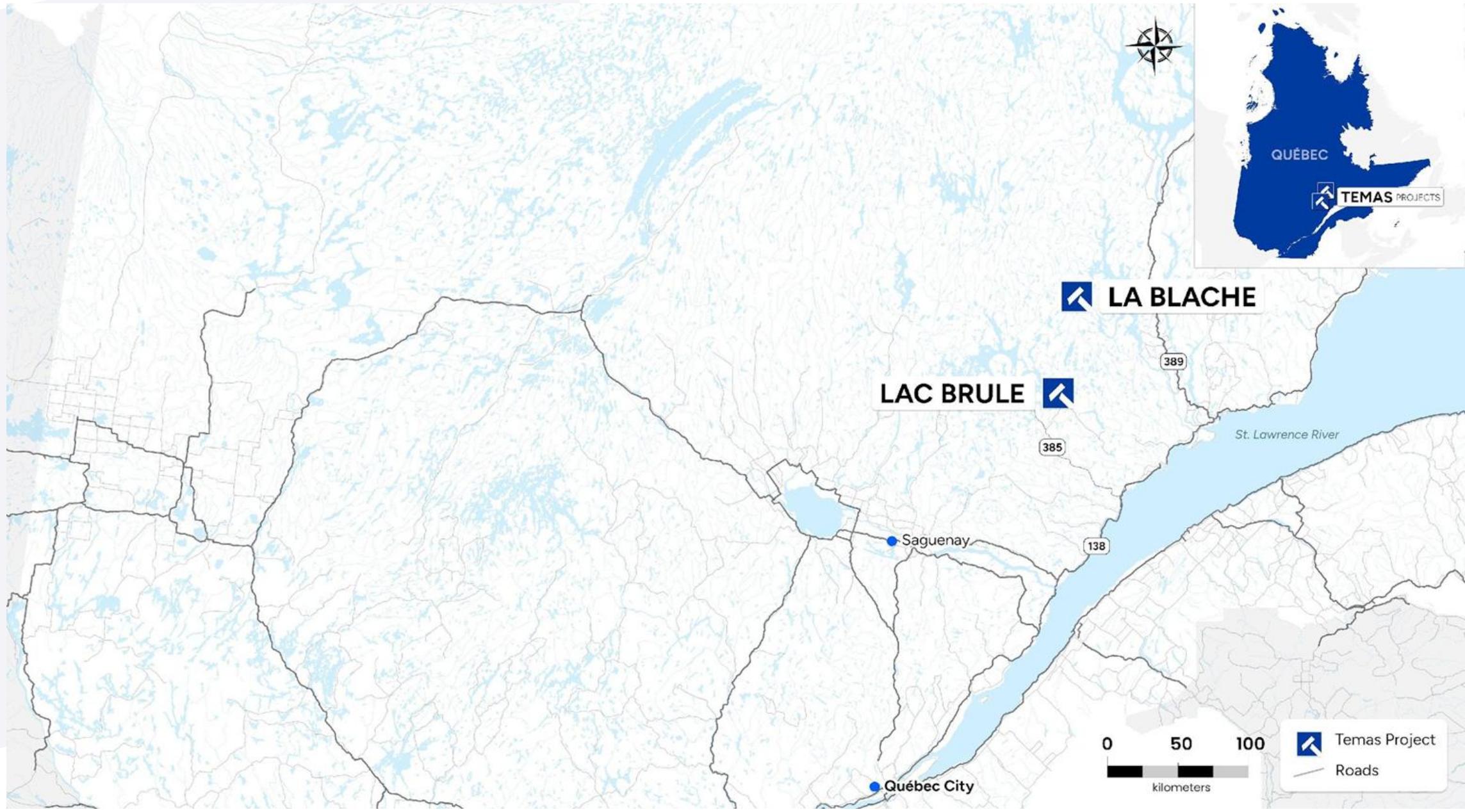
FEEDSTOCK: NORTH AMERICAN MINERAL EXPLORATION

Temas offers investors upside exposure through both its RCL processing platform and a direct mine to end user ore solution with strategic supply of titanium dioxide to North America

— “

"Our mineral exploration assets at La Blache and Lac Brûlé are more than just resource-rich projects — they are uniquely positioned to feed directly into our proprietary RCL processing platform. With high-grade, near-surface titanium-vanadium deposits and proven infrastructure access, we're building a vertically integrated supply chain that maximizes resource value, lowers processing costs, and drives sustainable growth from the ground up."

David Caldwell, COO


” —

TEMAS MINERAL PROPERTIES – QUEBEC CANADA

ASX:TIO CSE:TMAS OTCQB:TMASF FRA:26PO

TEMASRESOURCES.COM

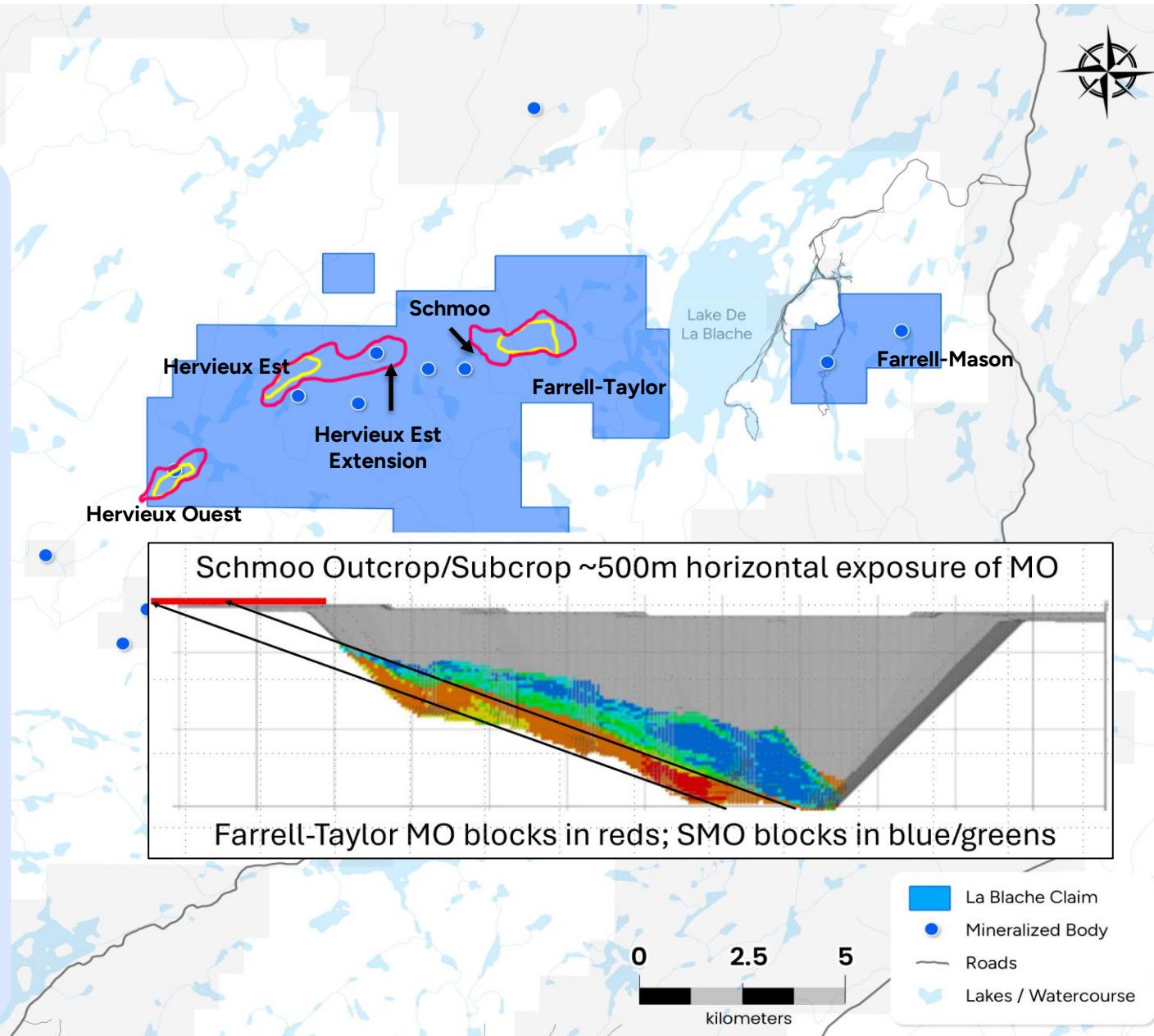
18

LA BLACHE – MASSIVE VTM RESOURCE ~ 208 MILLION TONNES +

ASX:TIO CSE:TMAS OTCQB:TMASF FRA:26P0

TEMASRESOURCES.COM

Iron Titanium Vanadium Gallium Scandium


- La Blache is comprised of 3 known deposits
- A large Ti, Fe, V Asset with Ga, Sc, Mg co-products
- ~ 7,000 hectares
- ~ 47,500 m drilling completed

30+ Mt of Historic Measured and Indicated Resources – not previously included in the 2024 PEA.

Temas has access to > 42,000 meters of drill core (re-acquisition costs of > CAD\$45M) and additional required assaying is planned < CAD\$1M.

- Within 2.5 km from a main resource road
- Within 25 km of power
- Within 100 km of a rail line
- Within 120 km of St Lawrence River & tide water

The deposit daylights to the west (at Schmoo).

19

THE LA BLACHE DEPOSIT - BY THE NUMBERS

Deposit	43-101 Resource	Strip Ratio	Density	Tonnage	TiO ₂ %	V ₂ O ₅ %	Fe ₂ O ₃ %	Ti %	V %	Fe %
Hervieux West MO	M&I	1.95	4.55	19,470,000	18.80	0.46	62.88	11.27	0.26	43.98
	Inferred		4.55	4,700,000	18.63	0.48	61.99	11.17	0.27	43.36
Hervieux East MO	M&I	2.60 - 3.49	4.57	12,801,000	18.48	0.43	62.94	11.08	0.24	44.02
	Inferred		4.51	9,883,000	18.23	0.41	62.09	10.93	0.23	43.41
Farrell Taylor MO	Inferred	3.51	4.42	108,800,00	17.83	0.32	59.20	10.69	0.18	41.55
Farrell Taylor SMO	Inferred		3.28	99,700,000	6.26	0.07	21.98	3.75	0.04	15.37

LA BLACHE DEPOSIT – HEADING TOWARDS FEASIBILITY

- Plans include a comprehensive re-assaying up to 40,000 m of existing NQ core (**re-acquisition costs of >AUD\$45M**).
- ~ 2,300m of additional drilling resulting in a partial Measured and Indicated Resource calculation.
- Additional in-fill drilling is planned for 2027.
- Baseline environmental and archaeological studies will be designed and initiated.
- LiDAR survey has been conducted to determine pre-disturbance conditions and to allow for a more precise DEM.

Key components of the La Blache Field Program include:

Defining the distribution of ilmenite and vanadium titanomagnetite ("VTM") within the deposit

Further refining the density model for the deposit allowing for a feasibility level predictive model for mine design and economic evaluation.

Defining the Fe, Ti, V, Ga, Sc elemental deportment within each of these ore mineral phases

Gathering complete multi-element whole rock data to assure minimal environmental impact and enhance sustainability

Geotechnical and oriented core studies may also be part of a future drill program.

La Blanche Mineral Exploration (Phase 1)	AUD\$
LiDAR Survey - completed	\$50,000
HQ Diamond Drilling - completed	\$3,200,000
Pre-Feasibility Study – in design phase	\$300,000
Initiate Baseline Studies – in design stage	\$250,000
La Blanche Metallurgical Testing	
Resampling of Existing Core – in progress	\$250,000
	\$4,050,000

FORECASTED NEWSFLOW

Q1-2026	Q2 - 2026	Q3 - 2026	Q4-2026
<p>Achieve First Third-Party RCL Commercial Test Revenue</p> <p>Hire Australian-based BD lead - RCL</p> <p>Engage Andritz for Pyrohydrolysis Metallurgical Work</p> <p>Engage US-based Engineering Firm for RCL Scale up Plan</p> <p>RCL Testwork Updates - La Blache - Vanadium</p> <p>Assay work (La Blache) – adding Ga & Sc</p> <p>RCL Bench Test (La Blache) - Ga & Sc</p> <p>Select new RCL Metallurgical Lab Site and Improvements</p> <p>Set up Scientific Advisory Board for RCL Metallurgical Division</p>	<p>Sign 2 new Third-Party contracts for RCL Commercial Test Revenue</p> <p>File Additional Patents (PCT) on RCL Vanadium Extraction</p> <p>Re-Assay Historic La Blache drill core (up to 36,000 m)</p> <p>Sign First Third-Party IP Licensing / JV Agreement</p> <p>Begin RCL Pilot Plant Site Selection</p> <p>File New Process Patent (CM or REE Focused) for RCL platform technology</p> <p>Continue PCT Patent Rollout for RCL platform technology</p> <p>Begin Patent "Evergreen" Strategy</p>	<p>Continue to secure Third-Party RCL Commercial Test Contracts</p> <p>Select Pilot Plant site and begin Commissioning process</p> <p>Receive Non-Dilutive Financing for RCL / La Blache Development</p> <p>Receive Assay Results La Blache Historic Drill Core</p> <p>Revised Maiden Resource Estimate</p> <p>Sign Second Third-Party Licensee / JV Agreement</p> <p>Complete Pathway to Commercialization All Metals</p> <p>RCL Testwork Updates – La Blache</p> <p>Continued RCL Patent Filings and Evergreen strategy</p>	<p>Continue to secure Third-Party RCL Commercial Test Contracts</p> <p>Update - New Pilot Plant Commissioning</p> <p>RCL Testwork Updates</p> <p>Update - Licensing Partner Engagement</p> <p>Assay Results Interpretations (La Blache and Lac Brule next steps)</p> <p>Roadmap to PFS La Blache</p> <p>Continue Patent Filings and Evergreen filings</p> <p>Mobile Pilot Plant Concept Design</p>

CORPORATE SNAPSHOT

WHO IS TEMAS RESOURCES

Temas Resources Corp.

TICKER SYMBOLS

ASX: **TIO** (IPO Oct 26/25)

CSE: **TMAS** | OTCQB: **TMASF** | FRA: **26PO**

Share Price
AU\$0.19

Market Cap
~AU\$18.5M

Patents
11 Issued

Shares Outstanding 97,791,257

Options and Warrants 14,894,281

Fully Diluted 112,685,538

Kyler Hardy

**EXECUTIVE CHAIRMAN
DIRECTOR**

Tim Fernback

**CEO
DIRECTOR**

David Robinson

CFO

David Caldwell

COO

Daniel Dutton

**METALLURGICAL
TEAM LEAD**

Nic Matich

DIRECTOR

Véronique Laberge

DIRECTOR

Kobi Ben-Shabat

DIRECTOR

WHY INVEST WITH TEMAS

- Temas is commercializing its RCL mineral processing technology that is OPEX and environmentally friendly.
- The RCL platform allows Temas to reshore “mine to end-user” critical minerals production - securing western-friendly supply chains.
- Global titanium supply chain is currently high cost, environmentally unsustainable and dominated by China, and Russia. Lower cost solution which produces high quality end product from complex and low value ores.
- Temas has a strong management, technology and operations team in place.
- Temas has two large titanium dioxide exploration and development projects which complement its RCL technology platform and open the doors for Temas to be a provider of high value titanium dioxide powder.

TEMAS

Revolutionizing Metal Production

Proprietary IP. Global Licensing. Titanium & Critical Minerals.

Tim Fernback
PRESIDENT & CEO

timf@temasresources.com
604-340-3774

British Columbia Office
309 – 2912 West Broadway Vancouver BC V6K 0E9

Kyler Hardy
EXECUTIVE CHAIRMAN, DIRECTOR

khardy@cronincapital.ca

Québec Office
800 Boulevard René-Lévesque Ouest, Suite 1730, Montréal, QC H3B 1X9